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ICASE WORKSHOP ON PROGRAMMING COMPUTATIONAL GRIDS�

THOMAS M. EIDSONy
AND MERRELL L. PATRICKz

Abstract. A workshop on Programming Computational Grids for distributed applications was held

on April 12{13, 2001 at ICASE, NASA Langley Research Center. The stated objective of the work-

shop was to de�ne, discuss, and clarify issues critical to the advancement of Problem Solving Environ-

ments/Computational Frameworks for solving large multi-scale, multi-component scienti�c applications us-

ing distributed, heterogeneous computing systems. This report documents a set of recommendations for

NASA that suggest an approach for developing an application development environment that will meet

future application needs.

Key words. software components, computational frameworks, scienti�c applications, computational

grids, distributed computing

Subject classi�cation. Computer Science

1. Introduction. A workshop on Programming Computational Grids for distributed applications was

held on April 12{13, 2001 at ICASE, NASA Langley Research Center. Twelve researchers, software de-

velopers, and users of Problem Solving Environments/Computational Frameworks from government and

university laboratories participated. The stated objective of the workshop was to de�ne, discuss, and clarify

issues critical to the advancement of Problem Solving Environments/Computational Frameworks for solv-

ing large multi-scale, multi-component scienti�c applications using distributed, heterogeneous computing

systems.

As part of the preparation for the workshop, a small panel of experienced application developers was

assembled and recommendations for programming needs were discussed. The results of these discussions were

presented to the workshop attendees. During the discussion of requirements and other issues with both the

application developers and the system software developers, it was clear that neither group fully understood

the ideas and problems of the other. It was also clear that neither group is given the time and support to

investigate the requirements of modern applications programming and to translate those requirements into

design requirements for Problem Solving Requirements. Notwithstanding, these discussions led to a set of

recommendations for NASA managers and application developers who need to use computational frameworks

to solve their multi-disciplinary scienti�c applications. While targeted for NASA, the recommendations

should be of interest to the entire scienti�c programming community.

Following the Introduction, the report opens with a set of de�nitions. The primary focus of the report

is the recommendations to NASA which are presented in Section 4 of the report. In Sections 5 and 6,

several technical issues relating to scienti�c programming requirements are presented, which are intended to

augment the recommendations. While there was a general consensus that software component technology

o�ers a signi�cant potential, there is disagreement on speci�c requirements of scienti�c applications. The

result is that the development of prototype frameworks as well as general research into scienti�c software

components lacks focus. Sections 5 and 6 of the report elaborate on some of the issues that need to be

�This workshop was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-

97046 while the authors were in residence at ICASE, NASA Langley Research Center, Hampton, VA 23681-2199.
yICASE, MS 132C, NASA Langley Research Center, Hampton, VA 23681, teidson@icase.edu
zICASE, MS 132C, NASA Langley Research Center, Hampton, VA 23681, mpatrick@icase.edu
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addressed before the research community can move to a more focused approach.

The technology direction suggested in this report is already being taken by some researchers at NASA,

as well as others in the scienti�c community. The report recommends more focus and co-ordination. A set

of these related research projects are summarized in the Appendix.

2. De�nitions. The programming technology discussed in this report is in an evolving research stage.

As such, there are few terms with de�nitive de�nitions. The following de�nitions were included to provide

clarity to the discussions that follow.

A Problem-Solving Environment (PSE) is an integrated collection of software tools that facilitates

problem-solving in some domain. This includes de�ning, building, executing, and managing the applica-

tion. Additionally, this can include viewing and analyzing results related to the problem being solved.

A computational framework is an integrated collection of software tools that facilitates the development

and execution of an application. A framework is the core feature of some PSEs.

A programming model is a set of abstractions and a set of rules that specify the combination of those

abstractions in a form that can be translated to create execution instructions for an application.

A computational Grid is a collection of heterogeneous computational hardware resources that are dis-

tributed (often over a wide area) and the software to use those resources. An important feature that converts

a set of computers and software connected by an internet into a Grid is a set of support services (resource

management, remote process management, communication libraries, security, monitoring support, etc.) and

an organizational structure that provides usage guidelines or rules.

Grid programming is just a subset of distributed programming. Distributed programming initially was

focused on developing applications distributed on a local area network (LAN) where administration and

security problems were minor. Also, the heterogeneous nature of the computers on the LAN typically

covered a narrow range. Grid programming just extends distributed programming into more complicated,

wide-area, heterogeneous environments.

An element application is a code in stand-alone executable or library form, that is focused on a relatively

narrow aspect of some physics, mathematics, graphics, or other science. Sometimes an element application

corresponds to some scienti�c discipline; thus, element applications are sometimes called discipline applica-

tions.

A composite application is de�ned as an application that is developed from the integration of smaller

element applications. Examples of composite applications are (i) codes built from numerical libraries and

(ii) a design code that integrates several discipline codes along with an optimization code.

Metadata is information about some programming entity that supports its use in some more comprehen-

sive program (or meta-program) such as a composite application. Metadata includes interface speci�cations

that describe how to access the programming entity and behavioral speci�cations that describe conceptual

and practical details of correctly integrating the entity into the meta-program. For example, the information

expressed in a Fortran subroutine could de�ne some numerical algorithm. Interface metadata would describe

the arguments needed to call that subroutine, typically in some general language. Behavioral metadata might

describe the parallelization strategy as it relates to target machines. Behavioral metadata could even be

used to describe physical and numerical assumptions embedded in the numerical algorithm.

A software component is a basic unit of software packaged for use in e�ciently building some larger

composite application. The software package includes metadata that minimally de�nes any interfaces to

that software so that some computational framework can more easily provide the necessary integration.

Software component technology is intended
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� to support software reuse and sharing,

� to simplify use of multiple languages,

� to support the e�cient building of large applications, and

� to assist building distributed applications.

3. Related Forums. Two key scienti�c community-based groups that are playing a leadership role in

the development of software component and computational grid technologies are described. These organiza-

tions play a role in the implementation of the workshop's recommendations.

The Global Grid Forum (Global GF) [3] is a community-initiated forum of individual researchers and

practitioners working on distributed computing or Grid technologies. Global GF is the result of a merger

of the Grid Forum, the eGrid European Grid Forum, and the Grid community in Asia-Paci�c. Global GF

focuses on the promotion and development of Grid technologies and applications via the development and

documentation of \best practices," implementation guidelines, and standards with an emphasis on rough

consensus and running code. E�orts are also aimed at the development of a broadly based Integrated Grid

Architecture that can serve to guide the research, development, and deployment activities of the emerging

Grid communities. Such an architecture will advance the impact of the Grid through the broad deployment

and adoption of fundamental basic services and by sharing code among di�erent applications with common

requirements.

The Common Component Architecture Forum (CCA Forum) [4] is a group of government lab (mainly

DOE) and university researchers whose objective is to de�ne a minimal set of standard features that a

high-performance component has to provide, or can expect, in order to be able to use components developed

within di�erent PSEs. Such standards will promote interoperability between components developed by

di�erent teams across di�erent institutions.

4. Recommendations for Future Direction. Because of the unprecedented increase in both single

platform and distributed computing capabilities, scienti�c computer applications are evolving to tackle much

larger, multi-scale problems where the simulation or modeling of a range of di�erent physics needs to be

solved, often as a coupled system. Emerging Grid technologies for wide-area distributed computing provide

the foundation for these large-scale applications to use internets in building a computational infrastructure

for their solutions.

Historically, scienti�c application developers have exhibited a great deal of independence in the pro-

gramming styles they used while focusing on the need for creativity and persistent experimentation of their

disciplinary codes. Given the multi-disciplinary and distributed nature of the applications, the current need

is to focus on technology transfer to reap more of the bene�ts of years of software research and development

of disciplinary codes, software libraries, and tools. The result is that programming e�ciency, code mainte-

nance, code clarity, and code sharing with performance guarantees have become more important. This means

that modern programming methodology and practices need to be focused on good organization, 
exibility,

adaptability, and re-usability. Such practices should support portability and interoperability of codes. The

recommendations and associated discussions below target these needs.

� Recommendation 1

A scienti�c programming model for developing and executing composite applications

should be based on software component technology.

A software component is just a way of packaging code in a modular manner with clearly de�ned

interfaces. Metadata is included as part of the component to provide details that enhance the

integration of that code into an application. The primary target of a software component is a frame-

3



work that understands the packaging protocol and the metadata to provide a component integration

environment. If the packaging and metadata speci�cations are appropriately designed, a code pack-

aged in component form will contain information about its use that has value outside a targeted,

component-based framework. This means that the component methodology can co-exist with other

programming systems. An ideal goal would be for the organizational and packaging characteristics to

be pervasive in the programming community while supporting alternative programming approaches,

not preventing them.

{ Advantages of Software Component Technology

1. A key design feature of software component technology is the rapid integration of an element

code (or component) into a composite application.

2. Code maintenance and validation will be easier because of the modular design and formal

packaging requirements of the component approach.

3. Codes maintained in component form will tend to be reused because of the above advan-

tages. This includes not only reuse by the code developer, but e�cient sharing of software

with others.

4. Distributed programming can be easier and more e�cient when based on component tech-

nology. Distributed software development includes both conceptual and practical issues.

The conceptual issues|distributed layout, synchronization, control 
ow, data 
ow|are

often easy for programmers to de�ne. However, the practical issue of managing the many

details can overwhelm many programmers. These details include:

� managing distributed �les,

� managing code at di�erent sites with di�erent computers and di�erent architectures,

� determining which code will run where, and

� managing complex control 
ows.

Software component technology can provide a systematic format that assists programmers

in solving each issue in a step-by-step procedure.

5. Metadata associated with a component (integrated speci�cations and documentation) can

result in increased con�dence in the modi�ed application created by changing or adding a

component.

6. Code portability can be improved; e.g., a distributed computing solution can be used to

run a code on its \natural" architecture, rather than converting it to run on the user's

desktop.

7. Computational frameworks based on plug-and-play components support rapid prototype

and production code development.

8. The need to understand and to use multiple languages is reduced. Frequently, users want

to use a code that is written in an unfamiliar language. Use of generic interfaces reduces

the need to learn the interface details of such codes.

{ Costs of Software Component Technology

1. Programmers will need to learn new tools and to develop new programming practices. The

long-term bene�ts resulting from the use of the resulting tools should o�set the overhead

associated with learning new tools and practices. An important issue is to involve appli-

cation programmers and users in the tool design so that the most appropriate tools are

developed.
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2. Some programmers will need to learn new programming styles. However, the component

programming style focuses on good code and data organization to enhance understanding

an application and to minimize data motion. Such coding practices are already in use by

many application developers.

3. Program management will need to be convinced that the resulting bene�ts will justify

the transition costs. In many cases, current programming practices simply do not support

management objectives. Complex composite applications are needed to solve many modern

engineering problems. These applications need signi�cant increases in functionality with

decreased software production costs.

4. Legacy codes will require some redesign. However, the component approach does allow for

an incremental redesign strategy. For example, the most valuable kernels can be converted

to components �rst. As more elements become available in component form, it will be

cheaper to rebuild a complex legacy code from components as compared to maintaining it.

5. Large application systems with complicated couplings between code elements will be the

hardest to redesign. But even here, the incremental approach will eventually become

e�ective.

6. The component approach does result in some performance overhead to support its 
exibil-

ity. Appropriate design of frameworks will minimize this. In the long run, features such as

rapid prototyping can actually result in better delivered performance as more designs can

be tested when programming time is limited. Most importantly, component designs free

the author of a particular component to focus most of his e�orts on creating optimized ver-

sions for di�erent situations, rather than spending time maintaining infrastructure codes

with no impact on performance.

7. The component approach may prevent compilers and runtime systems from performing

cross-module optimization. On the other hand, compilers could evolve and use the meta-

data associated with components to better handle these optimizations.

� Recommendation 2

NASA should form a task force of software and application developers along with po-

tential users to provide computational framework requirements and work with the CCA

Forum developers. It is critically important that NASA provides its requirements to

both the CCA and Global Grid Forums.

The design and implementation of an e�ective component-based framework will need input from

application developers and users. Application scientists should help to de�ne framework speci�ca-

tions by identifying the requirements for components and services that will be needed to build their

applications. Additionally, application developers need to suggest programming models that will be

most understandable and that will be e�cient to use. Any framework speci�cations should support

one or more such programming models. Providing a close relationship between software developers

and users will speed up the development of a quality product.

The Common Component Architecture (CCA) Forum o�ers the best starting point for coordinat-

ing the development of scienti�c component technology. The CCA speci�cation o�ers an attractive

starting point because its design focuses on specifying the minimum essential elements of a com-

ponent programming environment. This will allow the scienti�c community to develop the higher

abstractions to best suit their needs. The CCA Forum could be viewed as focusing on a limited,
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but extremely important element of the complete Grid programming problem that is the focus of

the Global Grid Forum. This element, developing the core of a programming model and framework

infrastructure, provides a foundation for e�cient use of the Grid and, thus, will require interaction

between the CCA Forum and all the working groups in the Global Grid Forum. Speci�cally, the

CCA Forum could focus on demonstrating the viability of prototype and/or standard implementa-

tions of the CCA speci�cation. It is important to show that a CCA-compliant framework can be

delivered as an open source platform that will work with all Grid standards. It should be easily

downloaded and installed.

� Recommendation 3

NASA should join with other mission-oriented government agencies, maybe through

the National Coordinating O�ce for Information Technology Research and Develop-

ment, but at least with DOE and DOD, in working with the CCA Forum in de�ning

reference standards for component-based computational frameworks. It should encour-

age and promote coordination between the CCA Forum and the Global Grid Forum.

The success of software-component technology will depend on the creativity in both the design and

implementation of systems and, thus, will depend on past and future government-supported research

done at universities and government labs. However, no matter how good the technology, a signi�-

cant and possibly primary bene�t will be the creation of a synergetic software environment where

codes can be easily shared. Such an environment must be based on standards, and this is where

government agencies should play a signi�cant role.

While scienti�c software components o�er signi�cant bene�ts for programming e�ciency and code

sharing, a viable market is also needed to support the development cost. The small size of the

scienti�c market cannot support high software development costs.

An organized program to transition proven high-performance component technology and applica-

tions/user designs to industry is necessary to satisfy software life-cycle requirements (maintenance,

support, and training) at NASA. Programming environments are large and generally evolving soft-

ware systems. Development and maintenance costs are too large to be handled by a small or

modest-sized laboratory. The open-source approach is good for including creativity in the early

developmental stages of a software system, but will not provide the reliability needed to support

large application projects. However, NASA as well as the scienti�c community, also cannot a�ord to

support a single-vendor solution. New ideas leading to improved technology need to be implemented

in a timely fashion to support research goals.

Potential bene�ts to NASA in carrying out Recommendation 3 are as follows.

{ It will help NASA to identify its own requirements based on its applications and strategic

vision.

{ It will provide incentive to commercial vendors to join the CCA Forum, which in turn will

in
uence new framework products.

{ It can share the cost of the design of frameworks with other agencies that have similar appli-

cations and programming requirements.

{ It will enable NASA to reduce software development costs in the long run.

{ It provides a convenient vehicle for partnering with universities and industry in developing

workable standards and best practices.
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� Recommendation 4

NASA should promote and support the adoption of scienti�c software component tech-

nology through an education program for application developers and users and a tech-

nology transition e�ort.

As noted earlier, scienti�c programmers tend to develop their software independently, partly because

programming tools for scienti�c computing environments have had little acceptance. If this is to

change, the use of software-component technology will need to be not only encouraged, but supported

by NASA and other agencies in the development of their mission-critical software. They will need

to educate their application developers and users of the bene�ts of the new technologies. User

education should include:

{ an understanding of the role of software-component technology in an overall environment where

codes are shared,

{ training in the tools needed to create and use components,

{ an understanding of good code design for use with component-based frameworks and other

tools,

{ a suggested transition strategy to change their programming styles, and

{ suggested strategies to include or to migrate old codes to the new environments.

The Task Force suggested in Recommendation 2 above could play a vital role by collecting rea-

sonably detailed user-based requirements that will help guide the design of new technologies and

create a synergy between application developers and programming system developers leading to

more adoption of new technology. It could organize workshops and hold seminars to promote a

broader understanding of software-component technologies and their use. The task force could as-

sist users and application developers in developing a transition strategy for converting old codes to

the new technology beyond the use of simple wrapping tools and templates. To gain full bene�ts of

the new technology, old codes should be split into appropriate modular pieces that best integrate

into the technology. Most importantly, tools are needed for integrating new and legacy codes into

new/bigger/more functional overarching multi-disciplinary applications.

5. Discussion Related to Recommendation 1.

� Good modular application design is important.

Over the years scienti�c programmers have learned that good programming requires good orga-

nization of data and execution steps. In the early days, good programming was focused heavily

on performance. More recently, code reuse and maintenance have become increasingly important.

Good organization translates into a more understandable programming style. The trend toward dis-

tributed applications just increases the importances of good design. Distributed computing usually

includes a wide range of communication performance. Appropriate organization and location of data

to minimize data transfers can reap big performance gains. Also, the management of code becomes

more di�cult for distributed applications as the code elements must be grouped for appropriate and


exible distribution to the various computers being used.

For applications designed to execute on a single computer, associated code elements can be managed

with minimal co-ordination and the loader can link them together with good e�ciency. For modern

applications, related code elements will need to be built in a modular fashion so that computational

frameworks can link the elements to form a composite application. The e�ectiveness of the framework

will be limited by the quality of the modular design of the elements passed to it. One criteria is
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that such modules should be chosen to allow code elements that use the same data to be easily and

e�ciently grouped on one computer. However, distributed computing is used when large data sizes

or performance needs dictate that approach. Modules also need to be designed to support e�cient

programming and execution of data transfers.

Components designed with good modularity support the previously mentioned advantages: rapid in-

tegration, plug-and-play capability, easier code validation and maintenace, and increased code reuse.

A good modular design is the essence of a systematic format needed to build successful distributed

applications.

� Programming 
exibility enables good performance.

Scienti�c applications can have a wide range of performance requirements, even within the same

application. Once the appropriate modularity is chosen, a programming model is needed that allows

the programmer to communicate the performance requirements of at least the critical modular

elements (or components).

The optimization of data 
ow is clearly one need. Historically, performance optimization has focused

on organizing the location of data storage and orchestrating data transfers. The details of data

storage and transfers are di�erent for distributed and grid programming, but they are still important

to performance. A programming model needs to provide 
exible, easy-to-program abstractions

that give the application developer su�cient control to create quality applications. For example,

depending on the size of a data set and the frequency of its use, a programmer may choose to transfer

data between di�erent computers for use by di�erent element applications. Alternatively, it might

be more e�cient to integrate several element applications into the same process for access to a data

set that cannot be moved e�ciently.

Distributed applications will need a variety of performance solutions. Remote process creation,

remote task execution, data transfers, event signals, and other remote operations will have di�erent

requirements for di�erent applications. Even the choice of computer on which to execute a particular

code can be important. And, the choices can be dynamic when code parameters such as data sizes are

allowed to vary. A capability is needed which allows application developers to indicate performance

requirements so that the underlying PSE can provide the appropriate implementation. One approach

to achieving 
exibility while supporting single-implementation components is via a �lter strategy.

For cases where the 
exibility requirement relates to communication between di�erent application

elements, �ltering software can be inserted between the relevant outputs and inputs.

A component framework can result in decreased performance over a \hand-coded" solution that di-

rectly uses a low-level, high-performance communication system. However, prototypes are showing

that the performance overhead can be kept small. The key is to de�ne speci�cations and create imple-

mentations where appropriate information is passed from the application developer to the framework

via metadata. This is also a key to support code reuse. Once code usage characteristics, such as

performance hints, are packaged with the code to form a component, other users will be less reluctant

to incorporate that code in their composite application.

� Metadata should not be limited to interface speci�cations.

Interface speci�cations describe the calling arguments for the method or function being accessed from

a component. This is the minimal information needed to use a component. Metadata can also include

speci�cations related to internal code behavior. This allows a code developer to alert a potential

user or composite application developer of important algorithm characteristics. When very large
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composite applications are built, the correct inclusion of all element applications into the composite

application cannot be manually managed by traditional code inspection by the application developer.

Sophisticated metadata schemes and contracts specifying composite application requirements will

be needed to allow the framework to more accurately verify the many details of correctly building

the composite application.

An aggressive use of metadata is needed for code reuse, plug-and-play capability, rapid integration,

and other component advantages to reap full bene�ts. When 10's or 100's of element codes are merged

to create a composite application, even a group of programmers will �nd it di�cult to accurately

analyze all aspects of integrating a large set of codes. Metadata/contract systems will be needed

to reduce the amount of detail that the programmer directly analyzes. This is particularly true for

distributed applications.

� Portability and interoperability support are still needed.

The increased importance of code reuse and sharing translates to concerns about portability and

interoperability. The component approach, particularly for distributed applications, can reduce one

aspect of this problem. Instead of porting a code, one can just use remote process management and

other distributed techniques to run the code on a friendly architecture. In some cases a code will

not have to be ported across di�erent architectures.

However, other aspects of portability are still a concern. The bene�ts of using component method-

ology are increased when there are lots of compatible PSEs. Multiple component speci�cations and

framework designs can create incompatibilities. Even if the single component speci�cation is used,

di�erent vendor frameworks will implement di�erent contorl and communication protocols if such

protocols are not part of an interoperability standard. Thus, the use of component and distributed

programming technology will shift portability concerns from architecture issues to framework issues.

There is a signi�cant amount of disagreement in the scienti�c community over what should be the

nature of solutions to portability and interoperability. This may be a signi�cant obstacle to the

rapid development of software component technology for the scienti�c community.

The number and nature of standards will signi�cantly a�ect the bene�ts of component technology

relating to code reuse, plug-and-play capability, and rapid integration.

� Standards should not sti
e creativity.

The wealth of knowledge, experience, and system infrastructure that results from all the recent Grid

research can most e�ectively be leveraged if it were possible to pick features from each system and

create a best-of-all-worlds system. Standardization is one way to achieve this level of portability

and interoperability.

On the other hand, the lifeblood of the scienti�c community is creativity. Scienti�c programming

standards should, therefore, support continual research, development, and insertion of new program-

ming technologies. This requires standards that are 
exible enough to support continual experimen-

tation while also providing programming e�ciency. This is one reason for not directly adopting

current business-based programming solutions.

The bene�ts of component methodology will only be obtained if there is wide acceptance. Otherwise,

they will be viewed as just another programming overhead that is best avoided. While the design

process of open standards can be frustrating, the result will be better accepted by scientists and

engineers. A logical consequence is that a single software or hardware vendor should not de�ne

scienti�c programming standards.
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Fig. 6.1.

6. Discussion Related to Recommendation 2.

� Programming models are needed to bridge the gap between framework designs and application

programming requirements.

As mentioned in the Introduction, system software developers and application developers have not

su�ciently exchanged ideas as to the exact nature of future programming systems. Lists of pro-

gramming features and execution services have been shared, but this is not su�cient. Programming

is an interactive task where the application developer communicates desired application concepts

through the abstractions and rules of some programming language or system. These abstractions

and rules, an implementation of some programming model, need to be carefully designed. If they are

too complex, programmers will either not learn them or will become distracted from their primary

task|implementing an algorithm that models some physics. If they are too simplistic, programmers

will become frustrated with the inability to e�ciently express the necessary application concepts.

A su�ciently broad programming model needs to be de�ned that can be used as a guide for imple-

menting software component technology.

� A development strategy for scienti�c components is needed that supports growth.

The need for creativity and 
exibility calls for a development strategy that can grow. Software

component technology supports growth and the insertion of changes. However, a growth strategy

should not only be applied to the development of scienti�c applications, but also to the development

of a component/framework speci�cation and to the evolution of frameworks from the prototype to

the production stage.

The development of scienti�c software components and frameworks should begin with as simple a

design as possible, but one that captures the fundamental functionality. As shown in Figure 6.1,

one would develop a core framework speci�cation and implementation. Framework services would

be added as components. This would allow various framework designs to be tested in parallel with

the development of the initial application components. One of the major problems with getting

good requirements for component-based frameworks is that most application developers lack the

appropriate experience. A concurrent system and application software development strategy should

help prevent application developers from being stuck with premature design decisions by system

developers.
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Fig. 6.2.

In addition, it is not clear how many styles of frameworks and service components are desired. A

single-core computational framework implementation would appear ideal. But can it provide the

range of functionality that scientists and engineers desire? Similarly, will one set of synergetic service

components be su�cient?

This suggests that a set of core-design speci�cations be developed and supported by NASA. From

this speci�cation, a base reference implementation should be developed and supported. A set of core

service components should also be implemented as part of the base reference implantation. After

this the design process should be allowed to mature for a period of time. Based on feedback from

early application and system software developers, the reference implementation can be modi�ed and

alternative implementations can be created.

� In the long run, the scienti�c component methodology should not focus on a single set of Grid

services.

The component-based framework recommended in this report is one type of Problem Solving En-

vironment that can be used to develop and execute scienti�c applications in Grid environments.

Figure 6.2 shows the relationship of the various software layers in such an environment. The soft-

ware (OS, system libraries) used to access Grid resources will probably always have a heterogeneous

nature. Various Grid service systems have been developed to unify these heterogeneous interfaces.

Currently the Globus Toolkit [5] is being targeted by the [6] IPG project as the primary set of Grid

services. Targeting one set of services is bene�cial to the early development of software systems and

even user applications. However, programming models and problem solving environment designs

should not be tied to a speci�c set of services. A good implementation of a software system should

either be relatively easy to port to a di�erent set of Grid services or, even better, be con�gurable to

support multiple sets.

� Multiple languages and architectures should be supported.

A component/framework speci�cation should support most languages and hardware architectures

used by scientists and engineers. However, a single language is needed to de�ne interface and

behavioral speci�cations.

� The emphasis on graphical user interfaces should be secondary.

Graphical programming environments are being increasingly used in the scienti�c community. Graph-
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ical interfaces are useful for all aspects of application development and usage including the program-

ming of high-level work-
ow. This is important for the development of applications by teams.

High-level information can be disseminated more rapidly in graphical form. Additionally, such an

environment can reduce the e�orts needed to educate users about new programming models, and

reduce the slope of the learning curve of new tools and the inevitable inertia to migrate to new and

di�erent paradigms.

On the other hand, scienti�c-component technology is still in a development stage. Determining the

best design for components to meet the requirements of the scienti�c community is a big challenge.

Developing graphical interfaces is challenging in its own right as poor interfaces can deter usage. It

is recommended that the emphasis be �rst placed on developing scienti�c component technology.

� Grid programming requirements such as trust and security should be supported.

Trust and security also require programming 
exibility. Security services can themselves be compo-

nents, and scienti�c components (for performance reasons) must be allowed to rely transparently on

the security services of their environment. That is, scienti�c programmers should not be burdened

with understanding implementation details of network security.

� Proposed solutions and prototypes generally need to scale to large applications and to support

di�erent application designs.

Many prototypes are used to give impressive demonstrations; especially when interesting graphics

is included. Unfortunately, the applications used in the demonstrations are not representative of

the large size or design of more complex applications. This is not just a result of deceit, but it

is an artifact of limited development budgets. Also, complex applications that would best bene�t

from a sophisticated programming system have not been built because they are too costly to build

without such a system|a \Catch-22". The bottom line is that evaluation of prototypes must be

done carefully to consider the need for application growth.

� Batch as well as interactive programming environments need support.

It is common for software systems to be developed in interactive environments. However, a signi�cant

amount of scienti�c applications are run in batch environments. As larger applications are developed,

there will be a need to run using multiple batch systems along with interactive systems at the same

time. Research on co-allocating resources is being conducted; one example being the Globus Project

[5]. This is another example of a requirement that is often overlooked when evaluating prototypes.

� Business solutions should not be ignored.

While the development and adoption of scienti�c standards is important, business-based solutions,

such as CORBA, should not be ignored because such technologies are being used in developing some

engineering tools. This calls for an approach that supports the integration of components based on

the di�erent technologies.

7. Summary: Future Plans. This workshop is just one step in the ICASE goal of researching so-

lutions for modern Problem Solving Environments for NASA. The results of this workshop along with the

requirements generated by application developer groups will be presented to NASA personnel. Feedback

from NASA will be gathered during these presentations to re�ne the recommendations. The workshop re-

sults will also be shared with the Global Grid Forum, the CCA Forum, interested government laboratories

and with other groups such as commercial companies.

Appendix: Related Projects and Products.

� Current Use of Components and Frameworks at NASA
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Software component technology is being used in some NASA projects. This includes systems based

on commercial technology developed for business applications and prototype frameworks based on

component-like concepts. However, there is no organized, overall approach for applying component

technologies to NASA scienti�c and engineering applications. Components provide the most bene�ts

when they are used to support the sharing of code and data and this requires standards. Although

some standards exist for business applications, a standards-based approach is needed for scienti�c

applications. NASA should help in de�ning such standards and be a leader in applying modern

software development practices to make sure that new codes are initially developed according to

such practices rather than retro�tting them after the fact.

Component-like approaches were used in projects, such as [7] FIDO, at NASA Langley in the early

1990's. Here the emphasis was on learning the fundamentals of developing modular applications

that could be used in distributed heterogeneous computing environments. The Multi-disciplinary

Optimization Branch and the HPCC O�ces have continually supported projects to build distributed,

design-optimization applications. These application developments used several commercial packages

(CORBA, Java RMI, iSIGHT, and Phoenix Model Center and Analysis Server). NASA also has

supported third-party development via the SBIR Program (the LAWE prototype by High Technology

Corporation [8]) and via support of research at ICASE (the Nautilus and Arcade projects).

{ iSIGHT is a software framework that automates the tedious, repetitious job of running your

design analysis programs. iSIGHT was developed by Engineous Software Inc. [9].

{ Phoenix products and processes integrate and automate data
ow between critical applications

across the enterprise. Model Center and Analysis Server were developed by Phoenix Integration

[10].

The value of the component-based frameworks has also been recognized by NASA management as

per the NASA ESS HPCC Round-3 request for proposals. It was noted, however, that most e�orts

emphasized the wrapping of legacy codes to turn them into components. NASA should strongly

support modern software development practices to make sure that new codes are developed from

the beginning according to such practices rather than retro�tting them after the fact, which reduces

the bene�ts.

The Numerical Propulsion System Simulation (NPSS [11]) Project centered at NASA Glenn Re-

search Center is developing an advanced engineering environment or integrated collection of software

programs for the analysis and design of aircraft engines and, eventually, space transportation compo-

nents. It accomplishes that by generating sophisticated computer simulations of an aerospace object

or system, thus permitting an engineer to \test" various design options without having to conduct

costly and time-consuming real-life tests. NPSS uses an object-oriented approach and incorporates

a number of component concepts. Elements of an engine are modeled with codes packaged so that

they �t together for a complete engine simulation. The component-like design allows for e�cient

interchange of element codes.

At NASA Ames (NAS Division), a component framework e�ort, Growler, supports environments

that are distributed across heterogeneous platforms, including environments that require low-latency

interactivity. Growler includes capabilities for collaborative visualization, analysis, and computa-

tional steering. To date, applications supporting several science domains of particular interest to

NASA have been demonstrated. Another project is titled \Agent-based Integrated Analysis Frame-

work." This is a prototype framework for integrating low- and high-�delity analysis tools to conduct
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multidisciplinary analysis over distributed computing systems. The package includes interpolation

and grid-generation tools to transfer data among CAD, CFD, and FEM analysis packages. A dis-

tributed computing capability was added using Analysis Server, a commercial software package.

Prototype agent behavior was added to several components. An expert system was used to manage

input data, select an appropriate 
ow, and build CFD 
ow solver input �les.

� Commercial Technology Resources

Commercial software-component technology (CORBA [12], Java Enterprise [13], Java Beans, [14],

and DCOM [15]) has primarily been developed for business applications. This technology is dis-

cussed in [2]. These systems provide available tools, demonstrated success, and tested reference

speci�cations, but these features fall short of meeting scienti�c requirements.

Commercial technologies

1. lack support for scienti�c data types,

2. lack support for scienti�c programming languages,

3. are not available for most supercomputer systems,

4. generally exhibit poor runtime performance, and

5. are too complex for easy adoption.

Component technologies for scienti�c use should draw on the best features of commercial technolo-

gies, but be enhanced to meet the needs of scienti�c users.

An example of a commercial e�ort that is targeting scienti�c applications is the FIPER Project that

includes a consortium of companies along with limited government lab and university involvement.

FIPER is documented in [1]. General Electric Corporate Research and Development is leading the

project that has been funded by the National Institute for Standards (NIST-ATP). This e�ort is

focused on developing a product around existing and emerging commercial technology. There is no

guarantee that any resulting product will meet the requirements of scienti�c components highlighted

below.

� Research Projects

The CCA Forum e�ort has been mentioned as part of the above recommendations. At least four

prototypes are associated with this e�ort.

1. CCAFFEINE is a prototype of a design for Single Program Multiple Data (SPMD) computing

with components based on the existing CCA speci�cation. Development is based at Sandia

National Laboratory [16].

2. CCAT is a prototype, distributed, software-component system for scienti�c and engineering

applications that is based on the CCA speci�cation. Development is based at Indiana University

[17].

3. The Componentsllnl.gov project is focusing on developing high-performance language interop-

erability capabilities for scienti�c languages, including Fortran 77, Fortran 90, C, C++, Java,

MATLAB, and Python. The Babel language interoperability tools and library are being devel-

oped in parallel with the CCA speci�cation. [18].

4. Uintah is a Problem Solving Environment targeted for applications that are part of the C-SAFE

(Center for the Simulation of Accidental Fires & Explosions) project. Development is based at

the University of Utah. [19].

Another example is the High Level Architecture (HLA [20]). The HLA is a general purpose archi-

tecture for simulation reuse and interoperability. The HLA was developed under the leadership of
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the Defense Modeling and Simulation O�ce (DMSO) to support reuse and interoperability across

the large numbers of di�erent types of simulations developed and maintained by the DoD. The HLA

Baseline De�nition was completed in 1996. The HLA was adopted as the Facility for Distributed

Simulation Systems 1.0 by the Object Management Group (OMG) in November 1998. The HLA

was approved as a standard through IEEE (IEEE Standard 1516) in September 2000. HLA is tar-

geted for discrete event simulation in contrast to equation simulations in the scienti�c community.

However, there are similarities.

The Advanced Programming Models (APM [21]) working group of the Grid Forum is working

to identify existing e�orts. A white paper, titled \Problem Solving Environment Comparisons,"

provides an overview of several prototype e�orts.

Below is a list of related projects at various government laboratories and universities.

1. Cactus is a PSE designed with a modular structure to enable parallel computation across

di�erent architectures and to support collaborative code development. Development is based

at the Albert Einstein Institute in Germany. [22]

2. DataCutter is a programming model and runtime support system intended for data-intensive

applications that makes use of remote data sets. Development is based at the University of

Maryland. [23]

3. Jaco3 is a software environment for coupling industrial simulation codes across the Grid using

CORBA. Development is based at IRISA/INRIA in Paris. [24]

4. The Nautilus Project is developing a programming and execution environment for building large

applications that execute on a computational Grid. Development is based at ICASE/NASA

Langley Research Center. [25]

5. Nimrod/G is a tool for automated modeling and execution of parameter sweep applications

over global computational Grids. Development is based at Monash University, Melbourne,

Australia. [26]

6. Ninf is a network-enabled, RPC-based server system for numerical computing. Development is

based at the Tokyo Institute of Technology. [27]

7. OpusJava is a Java-based framework for distributed, high-performance computing that provides

a high-level component infrastructure and that facilitates the seamless integration of HPF

modules into a larger distributed environment. Development is based at the Institute for

Software Science, University of Vienna. [28]

8. Netsolve is a project that aims to bring together disparate computational resources connected

by computer networks. It is a RPC-based client/agent/server system that allows one to access

both hardware and software components. [29]

9. Arcade is a web-based environment to design, execute, monitor, and control distributed appli-

cations. [30].

A related system is Legion, being developed at the University of Virginia. Legion is an integrated

architecture that provides a programming environment for the development and execution of appli-

cations in Grid environments. Legion includes lower-level, distributed computing services that are

not part of most of the PSE's mentioned in the report [31].
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